Study of Fluidic Ejection and Nanodroplet Formation

Van Quang Nguyen, Chung Nguyen Xuan, Dung Hoang Tien, Tung Nguyen Nhu, Hung Pham Tien, Tung Nguyen Tien, Tam Nguyen Chi

Abstract

Study of fluidic molecule ejection through nozzle diameters of 27.5, 30 and 40 Angstrom (Å) at temperatures of 310, 315 and 333 Kelvin (K) is performed by using the molecular dynamics simulation method. The results show that almost all molecules were ejected out through the nozzle and formed up the fluidic jets on the nozzle’s surfaces for all above cases. However, a fluidic jet was not separated out from the nozzle’s surface for the case of the 310 K temperature and 27.5 Å diameter under any the pushing force values and ejection time. Otherwise, the jets separate out from the nozzle’s surface to produce the fluidic nanodroplets when increasing either the nozzle diameter to 30 Å or the temperature magnitude to 315 K. These demonstrate the nozzle size and temperature magnitude decide to the fluidic ejection and nanodroplet formation.

Keywords

Fluidic ejection, Molecular dynamics simulation; Nanodroplet formation; Nanodroplet separation

Article Metrics

Abstract view : 139 times
PDF - 47 times

Full Text:

PDF

References

H. Jiang and H. Tan, One dimensional model for droplet ejection process in inkjet devices, Fluids, 3(2), 2018, 28.

D. Osmanovic and Y. Rabin, Chemically active nanodroplets in a multi-component fluid, Soft Matter, 15, 2019, 5965-5972.

C. D. Modak, A. Kumar, A. Tripathy and P. Sen, Drop impact printing, Nature Communications, 11, 2020, 4327.

H.-H. Lee, K.-S. Chou and K.-C. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, 16(10), 2005, 2436-2441.

L. Kondic, J. A. Diez, P. D. Rack, Y. Guan and J. D. Fowlkes, Nanoparticle assembly via the dewetting of patterned thin metal lines: Understanding the instability mechanisms, Physics Review E, Statistical, Nonlinear and Soft Matter Physics, 79(2), 2009, 026302.

A. Tiwari and J. Abraham, Dissipative particle dynamics simulations of liquid nanojet breakup, Microfluidics and Nanofluidics, 4, 2008, 227-235.

C.-F. Dai and R.-Y. Chang, Molecular dynamics simulation of formation and control of nanodroplets in piezoelectric nanoejection systems, Molecular Simulation, 36(11), 2010, 847-855.

X. Zhang, Z. Lu, H. Tan, L. Bao, Y. He, C. San and D. Lohse, Formation of surface nanodroplets under controlled flow conditions, The Proceedings of the National Academy of Sciences (PNAS), 112(30), 2015, 9253-9257.

J. Meng, J. B. You and X. Zhang, Viscosity-mediated growth and coalescence of surface nanodroplets, The Journal of Physical Chemistry, 124(23), 2020, 12476–12484.

J. Qian, G. F. Arends and X. Zhang, Surface nanodroplets: Formation, dissolution, and applications, Langmuir, 35 (39), 2019, 12583-12596.

M. Moseler and U. Landman, Formation, stability, and breakup of nanojets, Science, 289(5482), 2000, 1165-1170.

C. P. Steinert, I. Goutier, O. Gutmann, H. Sandmaier, M. Daub, B. de Heij and R. Zengerle, A highly parallel picoliter dispenser with an integrated, novel capillary channel structure, Sensor and Actuators A: Physical, 116, 2004, 171-177.

M. Ibrahim, T. Otsubo, H. Narahara, H. Koresawa and H. Suzuki, Inkjet printing resolution study for multi-material rapid, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 49(2), 2006, 353-360.

A. Dalili, S. Chandra, J. Mostaghimi, H. T. Charles Fan and J. C. Simmer, Formation of liquid sheets by deposition of droplets on a surface, Journal of Colloid and Interface Science, 418, 2014, 292–299.

J.-W. Lin and S.-X. Chu, Molecular dynamics simulations of nanoscale water jet, Proceedings of ASME First International Conference on Micro/Nanoscale Heat Transfer, Taiwan, 2008, 519-524.

Y. Li, J. Xu and D. Li, Molecular dynamics simulation of nanoscale liquid flows, Microfluidics and Nanofluidics, 9, 2010, 1011-1031.

N. Gopan and S. P. Sathian, The role of thermal fluctuations on the formation and stability of nano-scale drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 2013, 19-28.

J.-W. Lin, Studying on water nanojet ejection and the wetting phenomena on the nozzle surface, Microfluidics and Nanofluidics, 13, 2012, 37-48.

N. Gopan and S. P. Sathian, A langevin dynamics study of nanojets, Journal of Molecular Liquids, 200(B), 2014, 246-258.

T. Fu, Y. Wu, Y. Ma and H. Z. Li, Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting, Chemical Engineering Science, 84, 2012, 207-217.

C.-T. Lin, J.-K. Kuo and T.-H. Yen, Three-dimensional molecular dynamics study of aperture shape effect on nanojet ejection, Journal of the Chinese Institute of Engineers, 34, 2011, 1001-1011.

J. Eggers, Dynamics of liquid nanojets, Physics Review Letter, 89(8), 2002, 084502.

T.-H. Fang, W.-J. Chang and S.-L. Lin, Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface, Applied Surface Science, 253(3), 2006, 1649-1654.

S. Aphinyan, E. Y. M. Ang, J. Yeo, T. Y. Ng, R. Lin, Z. Liu and K. R. Geethalakshmi, Many-body dissipative particle dynamics simulations of nanodroplet formation in 3D nano-inkjet printing, Modelling and Simulation in Materials Science and Engineering, 27(5), 2019, 055005.

K.-T. Chang and C.-I. Weng, An investigation into the structure of aqueous NaCl electrolyte solutions under magnetic fields, Computational Material Science, 43(4), 2008, 1048-1055.

B. Beulen, J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff and R. van Dongen, Flows on the nozzle plate of an inkjet print head, Experiments in Fluids, 42, 2007, 217-224.

A. Asai, Three-dimensional calculation of bubble growth and drop ejection in a bubble jet printer, Journal of Fluids Engineering, 114(4), 1992, 638-641.

V. Q. Nguyen and J.-W. Lin, Investigation of temperature effects on nanoscale water droplet separation from a nozzle plate and impingement onto a fixed solid plate, SIMULATION, 92(10), 2016, 945-953.

M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Dagget, Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution, The Journal of Physical Chemistry B, 101(25), 1997, 5051-5061.

Refbacks

  • There are currently no refbacks.