Optimal Control Strategy on the Transmission Dynamics of Herpes Simplex Virus-II (HSV-II)

Eshetu Dadi Gurmu, Boka Kumsa Bole, Purnachandra Rao Koya


In this paper, optimal control theory is applied to Herpes Simplex Virus-II transmission model given by a system of non-linear ordinary differential equations. Optimal control strategy was employed to study the level of effort needed to control the transmission dynamics of HSV-II diseases using three controls; prevention, screening and treatment control strategies. The necessary conditions for the existence of the optimal controls was established using Pontryagin’s Maximum Principle. Optimal control system was performed with help of Runge-Kutta forward-backward sweep numerical approximation method. Finally, numerical simulations reveal that a combination of prevention, screening and treatment is the most effective strategy to eradicate the disease from the community.


Mathematical model; Numerical solution; Optimal control; Stability.

Article Metrics

Abstract view : 235 times
PDF - 128 times

Full Text:



M. Mustafa, E. M. Illzam, R. K. Muniandy A. M. Sharifah, M. K. Nang and B. Ramesh, Herpes simplex virus infections, Pathophysiology and Management, IOSR Journal of Dental and Medical Sciences, 15(7), 2016, 85-91.

R. Patel, O. J. Kennedy, E. Clarke, A. Geretti, A. Nilsen, S. Lautenschlager, J. Green, G. Donders,W. van der Meijden, M. Gomberg, H. Moi and E. Foley, 2017 European guidelines for the management of genital herpes, International Journal of STD & AIDS, 28(14), 2017, 1366-1379.

World Health Organization, WHO Guidelines for the Treatment of Genital Herpes Simplex Virus, Switzerland: WHO Press, 2016, 1-44.

R. J. Smith, J. Li, J. Mao and B. Sahai, Using within-host mathematical modelling to predict the long-term outcome of Human Papillomavirus Vaccines, Canadian Applied Mathematics Quartely, 21(2), 2013, 281-299.

L. J. Abu-Raddad, J. T. Schiffer, R. Ashley, G. Mumtaz, R. A. Alsallaq, F. A. Akala, I. Semini, G. Riedner and D. Wilson, HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and North Africa, Epidemics, 2, 2010, 173–182.

J. T. Schiffer, D. A. Swan, A. Magaret, T. W. Schacker, A. Wald and L. Corey, Mathematical modeling predicts that increased HSV2 shedding in HIV-1 infected persons is due to poor immunologic control in ganglia and genital mucosa, PLoS ONE, 11(6), 2016.

A. Mhlanga, C. P. Bhunu, and S. Mushayabasa (2015). A computational study of HSV-2 with poor treatment adherence, Abstract and Applied Analysis, 2015, Article ID 850670, 15 pages.

L. Almonte-Vega, M. Colón-Vargas, L. Luna-Jarrín, J. Martinez, J. Rodriguez-Rinc, A. L. Murillo, M. Thakur, B. Espinoza, R. Patil, L. Arriola, V. Arunachalam and A. Mubayi, Cost analysis of treatment strategies for the control of HSV–2 infection in the U.S.: A mathematical modeling-based case study, Mathematical Biosciences, 324, 2020, 108347.

C. Johnston, S. L. Gottlieb and A. Wald, Status of vaccine research and development of vaccines for herpes simplex virus, Vaccine, 34, 2016, 2948–2952.

I. H. Spicknall, K. J. Looker, S. L. Gottlieb, H. W. Chesson, J. T. Schiffer, J. Elmes and M.-C. Boily, Review of mathematical models of HSV-2 vaccination: Implications for vaccine development, Vaccine, 37, 2019, 7396–7407.

E. D. Gurmu, B. K. Bole and P. R. Koya, .Mathematical model of Herpes Simplex Virus-II (HSV-II) with global stability analysis, International Journal of Mathematical Modelling & Computations, In Press.

E. D. Gurmu and P. R. Koya, Sensitivity analysis and modeling the impact of screening on the transmission dynamics of Human Papilloma Virus (HPV), American Journal of Applied Mathematics, 7(3), 2019, 70-79.

A. G. Wedajo, B. K. Bole and P. R. Koya, The Impact of susceptible human immigrants on the spread and dynamics of malaria transmission, American Journal of Applied Mathematics, 6(3), 2018, 117–127.

W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, New York: Springer, 1975.

A. Kumar, P. K. Srivastava, Y. Dong and Y. Takeuchi, Optimal control of infectious disease: Information-induced vaccination and limited treatment, Physica A: Statistica Mechanics and its Applications, 542, 2020, 123-196.

C. J. Silva and D. F. M. Torres, Optimal control for a tuberculosis model with reinfection and postexposure interventions, Mathematical Biosciences, 244(2), 2013, 154-164.

K. R. Fister, J. Ernstberger and T. Burden, Optimal control applied to immunotherapy, Discrete and Continuous Dynamical Systems - Series B, 4(1), 2003, 135-146.

L. S. Pontryagin, Mathematical Theory of Optimal Processes, London: Routledge, 2018.

A. P. Lemos-Paião, C. J. Silva and D. F. M. Torres, An epidemic model for cholera with optimal control treatment. Journal of Computational and Applied Mathematics, 318, 2017, 168-180.

K. O. Okosun, O. D. Makinde and I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives, Applied Mathematical Modelling, 37, 2013, 3802–3820.

J. C. Panetta and K. R. Fister, Optimal control applied to cell-cycle-specific cancer chemotherapy, SIAM Journal on Applied Mathematics, 60(3), 2006, 1059-1072.


  • There are currently no refbacks.