Numerical Design of a Guide Vane for an Axial Fan

Ali Saeidi, Pooya Taheri


This study presents a custom guide vane design to substantially reduce the waste energy in axial fans. Ideally, there is no velocity component in the radial direction in axial fans, but in practice, the air leaving the axial fan has a large tangential component of velocity which produces a large amount of swirl kinetic energy. In order to solve this problem, a guide vane is designed to remove the rotational component of the air. The methodology described in this project is based on the fundamental governing continuity, momentum, and energy equations using the Finite Volume Method (FVM). In this project, the standard k-ω model is used for turbulent modeling. Two dimensional (2D) geometry of blades and airflow cross-section are designed using AutoCAD and CATIA while GAMBIT is employed to generate a suitable mesh for the three dimensional (3D) model. The mesh independence test is done to analyze the performance. The axial fan is simulated using FLUENT software to prove an increase in airflow rate after using the guide vane. Considering the final results, it can be observed that the airflow is increased up to 6.3%.


Axial fan; Finite volume method; Guide vane; Numerical analysis; Turbo-dynamics.

Article Metrics

Abstract view : 132 times
PDF - 34 times

Full Text:



R. U. Ayres, L. W. Ayres and B. Warr, Energy, power and work in the US economy, 1900-1998, Energy, 28(3), 2003, 219-273.

US Department of Energy, Improving Process Heating System Performance: A Sourcebook for Industry, 2008.

B. Pelley, C. Hemmelgarn, J. Althaus and J. Fries, Variable performance vane axial fan with high efficiency, US20120128494A1 Patent, 2011.

S. Caro and S. Moreau, Aeroacoustics modeling of low pressure axial flow fans, 6th Aeroacoustics Conference and Exhibition, Lahaina, USA 2000, 1-10.

M. J. Sheu, Numerical investigation of design parameters for an axial flow cooling fan, SAE Technical Paper, 970933, 1997.

B. Eck, R. S. Azad and D. R. Scott, Fans; Design and Operation of Centrifugal, Axial-Flow, and Cross-Flow Fans. Pergamon Press, 1972.

S. Kalpakjian, and S. R. Schmid, Manufacturing Processes for Engineering Materials. Pearson, 2016.

K. Y. Lee, Y. S. Choi, Y. L. Kim and J. H. Yun, Design of axial fan using inverse design method, Journal of Mechanical Science and Technology, 22(10), 2008, 1883-1888.

K. S. Lee, K. Y. Kim and A. Samad, Design optimization of low-speed axial flow fan blade with three-dimensional RANS analysis, Journal of Mechanical Science and Technology, 22(10), 2008, 1864-1869.

C. H. Cho, S. Y. Cho, K. Y. Ahn and Y. C. Kim, Study of an axial-type fan design technique using an optimization method, Journal of Process Mechanical Engineering, 223(3), 2009, 101-111.

L. M. C. Ferro, L. M. C. Gato and A. F. O. Falcão, Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine, Renewable Energy, 35(9), 2010, 1920-1928.

C. H. Wu, A general though-flow theory of fluid flow with subsonic or supersonic velocity in turbomachines of arbitrary hub and casing shapes, NACA Technical Notes, 2302, 1951.

C. H. Huang and C. W. Gau, An optimal design for axial-flow fan blade: theoretical and experimental studies, Journal of Mechanical Science and Technology, 26(2), 2012, 427-436.

P. F. Chen, C. H. Huang, M. C. Fang and J. H. Chou, An inverse design approach in determining the optimal shape of bulbous bow with experimental verification, Journal of Ship Research, 50(1), 2006, 1-14.

C. H. Huang, L. Y. Chen and S. Kim, An inverse geometry design problem in optimizing the shape of the gas channel for a proton exchange membrane fuel cell, Journal of Power Sources, 187(1), 2009, 136-147.

J. H. Kim, J. H. Choi, A. Husain and K. Y. Kim, Performance enhancement of axial fan blade through multi-objective optimization techniques, Journal of Mechanical Science and Technology, 24(10), 2010, 2059-2066.

C. M. Jang and K. Y. Kim, Optimization of a stator blade using response surface method in a single-stage transonic axial compressor, Journal of Power and Energy, 219(8), 2005, 595-603.

S. Burguburu, C. Toussaint, C. Bonhomme and G. Leroy, Numerical optimization of turbomachinery bladings, Journal of Turbomachinery, 126(1), 2004, 91-100.

O. Lofti, J. Teixeira, P. C. Ivey, G. Sheard and I. R. Kinghorn, Aerodynamic optimization of industrial fan blades, ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno, NV, USA, 2005, 1-8.

N. Chen, H. Zhang, H. Du, Y. Xu and W. Huang, Effect of maximum camber location on aerodynamics performance of transonic compressor blades, ASME Turbo Expo 2005: Power for Land, Sea and Air, Reno, NV, USA, 2005, 1-9.

T. Mengistu, W. Ghaly, and T. Mansour, Aerodynamic shape optimization of turbine blades using a design-parameter-based shape representation, ASME Turbo Expo 2007: Power for Land, Sea, and Air, May 14-17, 2007, Montreal, Canada.

C. Xu and R. Amano, A turbomachinery blade design and optimization procedure, ASME Turbo Expo 2002: Power for Land, Sea and Air, Amsterdam, Netherlands, 2002, 1-9.

J. R. Christophel, K. A. Thole and F. J. Cunha, Cooling the tip of a turbine blade using pressure side holes-Part II: Heat transfer measurements, Journal of Turbomachinery, 127(2), 2005, 278-286.

C. Clemen, Aero-mechanical optimization of a structural fan outlet guide vane, Structural and Multidisciplinary Optimization, 44(1), 2011, 125-136.

S. Shahpar and L. Lapworth, PADRAM: Parametric design and rapid meshing system for turbomachinery optimization, ASME Turbo Expo 2003: Power for Land, Sea and Air, Atlanta, USA, 2003, 1-12.

A. Thakker and F. Hourigan, Computational fluid dynamics analysis of a 0.6 m, 0.6 hub-to-tip ratio impulse turbine with fixed guide vanes, Renewable Energy, 30(9), 2005, 1387-1399.

J. Li, H. Tian and X. Yuan, Effect of inlet box on performance of axial flow fans, Frontiers of Energy and Power Engineering in China, 2(4), 2008, 390-394.

W. Xiao, D. Jin and X. Gui, The influence of guide vane on the performance of an axial fan for air-assisted sprayer, Journal of Physics: Conference Series, 1064, 2018, 012051.

Y. S. Choi, Y. I. Kim, S. Kim, S. G. Lee, H. M. Yang and K. Y. Lee, Numerical simulation on the performance of axial vane type gas liquid separator with different guide vane structure, ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, San Francisco, USA, 2019.

Y. Fan, L. Ailan and G. Xueyan, Numerical simulation on the performance of axial vane type gas liquid separator with different guide vane structure, International Journal of Fluid Machinery and Systems, 10(1), 2017, 86-98.

X. Chen, W. Chu, H. Zhang and X. Li, Numerical study on inlet angle of guide vane in recess vaned casing treatment, Aerospace Science and Technology, 93, 2019, 105323.

X. Zhang, Y. Li and H. Chen, Performance assessment of air-cooled steam condenser with guide vane cascade, Journal of Thermal Science, 28, 2019, 993-1003.

L. Wang, K. Wang, N. Wang, S. He, Y. Shi and M. Gao, 3D numerical simulation on flow field characteristic inside the large-scale adjustable blade axial-flow fan, Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019), Singapore, 2019, 395-403.

M. Kharati-Koopaee and H. Moallemi, Effect of blade tip grooving on the performance of an axial fan at different tip clearances in the absence and presence of inlet guide vanes, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(1), 2019, 72-84.

K. M. Almudahka, A. M. Elzahaby, M. K. Khalil, A. F. Nemnem and N. A. Elqussas, Enhancement of the surge margin of an axial-flow fan using inlet guide vanes (IGV), Engineering Research Journal, 1(39), 2019, 23-31.

J. F. Widmann, S. Rao Charagundla and C. Presser, Aerodynamic study of a vane-cascade swirl generator, Chemical Engineering Science, 55(22), 2000, 5311-5320.

S. A. Danczyk, Experimental and computational investigation of the flow field inside an axial fan, PhD Dissertation, Texas A&M University, 2002.

Y. W. Son, J. H. Choi, J. Lee, S. R. Park, M. Kim,and J. W. Kim, Analysis and test on the flow characteristics and noise of axial flow fans, EKC 2008 Proceedings of the EU-Korea Conference on Science and Technology, 2008, 85-93.

J. E. F. Williams and D. L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151), 1969, 321-342.

R. Jorgensen, Fan Engineering. NY: Buffalo Forge Company, 1983.

W. C. Osborne, Fans: (In Si/Metric Units), Pergamon Press, Oxford, 1966.

Y. Li, Y. Zhang and X. Yuan, Effects of inlet swirl on pressure side film cooling of neighboring vane surface, Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Expo, Seoul, South Korea, 2016.

Z.-W. Guo and J.-Y. Pan, The effects of the inlet guide vanes on an axial pump under off design points, Proceedings of the ASME 2018 5th Joint US-Euro Fluids Engineering Division Summer Meeting, Montreal, Canada, 2018.

Y.-S. Choi, Y.-I. Kim, S. Kim, S.-G. Lee, H.-M. Yang and K.-Y. Lee, A study on improvement of aerodynamic performance for 100HP axial fan blade and guide vane using response surface method, Proceedings of the ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, San Francisco, USA, 2019.

D. Zhao, R. Chen and X.-Y. You, Numerical study of the effect of inner guide vanes on performance of multi-blade centrifugal fan of range hood, IOP Conference Series: Earth and Environmental Science, 332(2), 2019, 022028.

J. Q. Xu, H. S. Dou, H. X. Jia, X. P. Chen, Y. K. Wei and M. W. Dong, Numerical simulation and analysis of the flow in a two-staged axial fan, IOP Conf. Series: Materials Science and Engineering, 129, 2016, 012060.

L. Jia, T. Zou, Y. Zhu and C. Lee, Rotor boundary layer development with inlet guide vane (IGV) wake impingement, Physics of Fluids, 30, 2018, 040911.

C. Stens and S. Riedelbauch, Influence of guide vane opening on the flow phenomena in a pump turbine during a fast transition from pump mode to generating mode, IOP Conf. Series: Journal of Physics: Conf. Series, 813, 2017, 012024.

R. A. Wallis, Axial Flow Fans and Ducts. New York: Wiley, 1983.

J. F. Wendt, Computational Fluid Dynamics: An Introduction. Springer, 2009.

S. H. Liu, R. F. Huang and C. A. Lin, Computational and experimental investigations of performance curve of an axial flow fan using downstream flow resistance method, Experimental Thermal and Fluid Science, 34(7), 2010, 827-837.

J. O. Hinze, Turbulence. New York: McGraw-Hill, 1975.

S. Jaw and C. Chen, Present status of second-order closure turbulence models. I: overview, Journal of Engineering Mechanics, 124(5), 1998, 485-501.

D. C. Wilcox, Turbulence Modeling for CFD. La Canada, Canada: DCW Industries. Inc., 2006.

D. B. Spalding, Mathematical models of turbulent flames; a review, Combustion Science and Technology, 13(1), 1975, 3-25.

Fluent 12.0 User’s guide, 2009.

S. B. Wibowo, Study of mesh independence on the computational model of the roll-up vortex phenomenon on fighter and delta wind models, International Journal of Fluid Mechanics Research, 46(5), 2019, 427-439.


  • There are currently no refbacks.