Conceptual Design of a Novel Biomimetic Underwater Robot

Georgios Volanis, Georgios E. Stavroulakis, Konstantinos-Alketas Oungrinis


By defining the limits and the design specification, that an underwater robotic vehicle should fulfill in order to be characterized as biomimetic, a shell structure with a modular locomotion mechanism is proposed, using THUNDER piezoelectric, for a novel biomimetic underwater robot.  Smart materials and especially piezoelectric actuators are an excellent alternative as a propulsion mechanism for our underwater swimming fish-like robot (SRFL swimming robot with fish-like locomotion), due to their unique characteristics. This paper presents the design characteristics, the restrictions in dimensions and weight of the underwater robot and the ability of it, for maneuverability. Furthermore, the articulated locomotion mechanism of the caudal fin is designed and analyzed, while the distribution of the pressure forces on the shell, as well as in the articulated mechanism of the tail fin is also determined. Finally, the articulated mechanism is represented in MATLAB/SIMSCAPE in order to simulate the locomotion of the tail fin, giving us the average speed and acceleration.


Biomimetic robot; Fish-like shell; Piezoelectric actuator; Underwater propulsion.

Article Metrics

Abstract view : 428 times
PDF - 78 times

Full Text:



J. E. Clark, J. G. Cham, S. A. Bailey, E. M. Froehlich, P. K. Nahata, R. J. Full and M. R. Cutkosky, Biomimetic design and fabrication of a hexapedal running robot, Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, South Korea, 2001, 1-6.

Maki K. Habib, Keigo Watanabe and Kiyotaka Izumi, Biomimetics robots, from bio-inspiration to implementation, 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, 2007, 1-5.

J. Ayers, C. Wilbur and C. Olcott, Lamprey Robots, Proceedings of the International Symposium on Aqua Biomechanisms, Japan, 2000, 1-6.

D. W. Thompson, On Growth and Form. New York, USA: The McMillan Company, 1945.

N. Plamondon and M. Nahon, Adaptive controller for a biomimetic underwater vehicle, Journal of Unmanned Vehicle Systems, 1(1), 2013, 1-13.

M. Li, S. Guo, J. Guo, H. Hirata and H. Ishihara, Development of a biomimetic underwater microrobot for a father–son robot system, Microsystem Technologies, 23, 2017, 849-861.

S. Guo, L. Shi, N. Xiao and K. Asaka, A biomimetic underwater microrobot with multifunctional locomotion, Robotics and Autonomous Systems, 60(12), 1472-1483.

M. Shahinpoor and K. J. Kim, Ionic polymer–metal composites: IV. Industrial and medical applications, Smart Materials and Structures, 14, 2005, 197-214.

D. W. Robinson, J. E. Pratt, D. J. Paluska and G. A. Pratt, Series elastic actuator development for a biomimetic walking robot, Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999, 1-7.

M. Shahinpoor, Y. Bar-Cohenz, J. O. Simpsonx and J. Smith, Ionic polymer–metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review, Smart Materials and Structures, 7(6), 1998, R15-R30.

S.-W. Yeom, I.-K. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators, Smart Materials and Structures, 18(8), 2009, 085002.

M. Sitti, D. Campolo, J. Yan and R. S. Fearing, Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms, Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, 3839-3846.

H. Shin, S. Jo and A. G. Mikos, Biomimetic materials for tissue engineering, Biomaterials, 24(24), 2003, 4353-4364.

J. Najem, S. A. Sarles, B. Akle and D. J. Leo, Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators, Smart Materials and Structures, 21(9), 2012, 094026.

Q. Shen, T. Wang, K. J. Kim, A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors, Bioinspiration & Biomimetics, 10(5), 2015, 055007.

M. Shahinpoor and K. J. Kim, Ionic polymer–metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles, Smart Materials and Structures, 13(6), 2004, 1362-1388.

A. A. Yumaryanto, J. An and S. Lee, A cockroach-inspired hexapod robot actuated by LIPCA, IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 2006, 1-6.

N. Lobontiu, M. Goldfarb and E. Garcia, A piezoelectric-driven inchworm locomotion device, Mechanism and Machine Theory, 36(4), 2001, 425-443.

S. Heo, T. Wiguna, H. C. Park and N. S. Goo, Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators, Journal of Bionic Engineering, 4(3), 2007, 151-158.

W.-S. Chu, K.-T. Lee, S.-H. Song, M.-W. Han, J.-Y. Lee, H.-S. Kim, M.-S. Kim, Y.-J. Park, K.-J. Cho and S.-H. Ahn, Review of biomimetic underwater robots using smart actuators, International Journal of Precision Engineering and Manufacturing, 13, 2012, 1281-1292.

N. Kamamichi, M. Yamakita, K. Asaka and Z.-W. Luo, A snake-like swimming robot using IPMC actuator/sensor, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Florida, 2006, 1812-1817.

R. S. Fearing, K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti and J. Yan, Wing transmission for a micromechanical flying insect, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, 2000, 1509-1516.

S. Guo, T. Fukuda and K. Asaka, A new type of fish-like underwater microrobot, IEEE/ASME Transactions on Mechatronics, 8(1), 2003, 136-141.

B. F. Smith, Development and characterization of a mechanically prestressed piezoelectric composite, Thesis, Virginia Commonwealth University, USA, 2008.

S. Tunçdemir, Design of mini swimming robot using piezoelectric actuator, Thesis, School of Natural and Applied Sciences, Middle East Technical University, Turkey, 2004.

L. Wang, Y. Hou, K. Zhao, H. Shen, Z. Wang, C. Zhao and X. Lu, A novel piezoelectric inertial rotary motor for actuating micro underwater vehicles, Sensor and Actuator A: Physical, 295, 2019, 428-438.

T. Salumäe, R. Raag, J. Rebane, A. Ernits, G. Toming, M. Ratas and M. Kruusmaa, Design principle of a biomimetic underwater robot U-CAT, 2014 OCEAN, St. John's, NL, Canada, 2014, 1-5.

S. B. Behbahani and X. Tan, Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins, Bioinspiration & Biomimetics, 11(3), 2016, 036009.

C. Zhou and K. H. Low, Design and locomotion control of a biomimetic underwater vehicle with fin propulsion, IEEE/ASME Transactions on Mechatronics, 17(1), 2012, 25-33.

Y. Terada and I. Yamamoto, An animatronic system including lifelike robotic fish, Proceedings of the IEEE, 92(11), 2004, 1814-1820.

M. Sfakiotakis, D. M. Lane, J. Bruce and C. Davies, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24(2), 1999, 237-252.

P. Szymak, Mathematical model of underwater vehicle with undulating propulsion, Third International Conference on Mathematics and Computers in Sciences and in Industry, Chania, Greece, 2016, 269-274.

P. W. Webb, Is the high cost of body caudal fin undulatory swimming due to the increased friction drag or inertial recoil?, Journal of Experimental Biology, 162, 1992, 157-166.

M. S. Triantafyllou and G. S. Triantafyllou, An efficient swimming machine, Scientific American, 272(3), 1995, 64-70.

G. S. Triantafyllou, M. S. Triantafyllou and M. A. Grosenbaugh, Thrust development in oscillating foild with application to fish propulsion, Journal of Fluids and Structures, 7(2), 1993, 205-224.

Z. Guan, N. Gu, W. Gao and S. Nahavandi, 3D hydrodynamic analysis of a biomimetic robot fish, 11th International Conference on Control, Automation, Robotics and Vision, Singapore, 2010, 793-798.

Y.-J. Park, U. Jeong, J. Lee, S.-R. Kwon, H.-Y. Kim and K.-J. Cho, Kinematic condition for maximizing the thrust of a robotic fish using a compliant caudal fin, IEEE Transactions on Robotics, 28(6), 2012, 1216-1227.

P. Szymak and M. Przybylski, Thrust measurement of biomimetic underwater vehicle with undulating propulsion, Scientific Journal of Polish Naval Academy, 213(2), 2018, 69-82.

M. G. Borgen, Design of a miniature, piezoelectrically actuated swimming vehicle, Thesis, The Ohio State University, USA, 2001.

M. G. Borgen, G. N. Washington and G. L. Kinzel, Design and evolution

of a piezoelectrically actuated miniature swimming vehicle, IEEE/ASME Transactions on Mechatronics, 8(1), 2003, 66-76.

W. Trimmer and R. Jebens, Actuators for micro robots, IEEE Conference on Robotics and Automation, Scottsdale, USA, 1989, 1547-1552.

P. Dario, R. Valleggi, M. C. Carrozza, M. C. Montesi and M. Cocco, Microactuators for microrobots: a critical survey, Journal of Micromechanics and Microengineering, 2(3), 1992, 141-157.

J. Yu, M. Tan, S. Wang and E. Chen, Development of a biomimetic robotic fish and its control algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(4), 2004, 1798-1810.

M. Sfakiotakis, D. M. Lane and B. C. Davies, An experimental undulating-fin device using the parallel bellows actuators, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, South Korea, 2001, 2356-2362.

D. Tzeranis, E. Papadopoulos and G. Triantafyllou, On the design of an autonomous robot fish, Proceedings of 11th IEEE Mediterranean Conference on Control and Automation (MED03), Rhodes, 2003, 1-6.

Q.-P. Wei, S. Wang, X. Dong, L.-J. Shang and M. Tan, Design and kinetic analysis of a biomimetic underwater vehicle with two undulating long-fins, Acta Automatica Sinica, 39(8), 2013, 1330-1338.

K. M. Mossi, R. P. Bishop, R. C. Smith and H. T. Banks, Evaluation criteria for THUNDERTM actuators, SPIE Conference on Mathematics and Control in Smart Structures, Newport Beach, California, 1999, 738-743.

S. Balakrishnan and C. Niezrecki, Investigation of THUNDERTM actuators as underwater propulsors, Journal of Intelligent Material Systems and Structures, 13(4), 2002, 193-207.

J. L. Pinkerton and R. W. Moses, A feasibility study to control airfoil shape using THUNDER, NASA Technical Memorandum 4747, 1997, 1-26.

K. M. Mossi and R. P. Bishop, Characterization of different types of high performance THUNDERTM actuators, SPIE Conference on Mathematics and Control in Smart Structures, Newport Beach, California, 1999, 43-52.

Z. Ounaies, K. Mossi, R. Smith and J. Bernd, Low-field and high-field characterization of THUNDER actuators, Proceedings of SPIE Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, 4333, 2001, 399-407.

C. Niezrecki and S. Balakrishnan, Power characterization of THUNDERTM actuators as underwater propulsors, Proceedings of SPIE: Smart Structures and Materials 2001: Smart Structures and Integrated Systems, 4327, 2001, 88-98.

H. P. Urbach, On optimum propulsion by means of periodic motion of rigid profile II. Optimization of the period and numerical results, Studies in Applied Mathematics, 82, 1990, 181-215.

H. P. Urbach, Existence of optimum propulsion by means of periodic motion of rigid profile, Studies in Applied Mathematics, 81, 1989, 93-116.

D. Costa, G. Palmieri, M.-C. Palpacelli, M. Callegari and D. Scaradozzi, Design of a bio-inspired underwater vehicle, 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Auckland, New Zealand, 2016, 1-6.

P. R. Bandyopadhyay, Maneuvering hydrodynamics of fish and small underwater vehicles, Integrative and Comparative Biology, 42(1), 2002, 102-117.

D. S. Barrett, M. S. Triantafyllou, D. K. P. Yue, M. A. Grosenbaugh and M. J. Wolfgang, Drag reduction in fish-like locomotion, Journal of Fluid Mechanics, 392, 1999, 183-212.

S. J. Park et al., Phototactic guidance of a tissue-engineered soft-robotic ray, Science, 353(6295), 2016, 158-162.


  • There are currently no refbacks.