Hepatitis C Virus (HCV) Prediction by Machine Learning Techniques
Abstract
Keywords
Article Metrics
Abstract view : 931 timesPDF - 357 times
Full Text:
PDFReferences
A. Elgharably, A. I. Gomaa, M. M. Crossey, P. J. Norsworthy, I. Waked and S. D. Taylor-Robinson, Hepatitis C in Egypt - past, present, and future, International Journal of General Medicine, 10, 2017, 1-6.
A. M. Vladimir and L. Sylvie, Hepatitis C virus: Morphogenesis, infection and therapy, World Journal of Hepatology, 10(2), 2018, 186-212.
C. W. Spearman, G. M. Dusheiko, M. Hellard and M. Sonderup, Hepatitis C, Lancet, 394(10207), 2019, 1451-1466.
D. Omran, M. Alboraie, R. A. Zayed, M. N. Wifi, M. Naguib, M. Eltabbakh, M. Abdellah, A. F. Sherief, S. Maklad, H. H. Eldemellawy, O. K. Saad, D. M. Khamiss and M. E. Kassas, Towards hepatitis C virus elimination: Egyptian experience, achievements and limitations, World Journal of Gastroenterology, 24(38), 2018, 4330-4340.
X. Li, H. Xu, P. Gao, Fibrosis index based on 4 factors (fib-4) predicts liver cirrhosis and hepatocellular carcinoma in chronic Hepatitis C virus (HCV) patients, Medical Science Monitor, 25, 2019, 7243-7250.
J. L. Horsley-Silva and H. E. Vargas, New therapies for hepatitis C virus infection, Gastroenterology and Hepatology, 13(1), 2017, 22-31.
V. Palanisamy and R. Thirunavukarasu, Implications of big data analytics in developing healthcare frameworks – A review, Journal of King Saud University–Computer and Information Sciences, 31(4), 2019, 415-425.
N. Satish Chandra Reddy, S. N. Song, Z. M. Lim and C. Xin Ying, Classification and feature selection approaches by machine learning techniques: Heart disease prediction, International Journal of Innovative Computing, 9(1), 2019, 39-46.
S. Hashem, G. Esmat, W. Elakel and H. Shahira, Comparison of machine learning approaches for prediction of advanced liver fibrosis in chronic hepatitis C patients, IEEE/ACM Trans Computational Biology and Bioinformatics, 15(3), 2018, 861-868.
S. M. El-Salam, M. M. Ezz, S. Hashem, W. Elakel, R. M. Salama, H. Elmakhzangy and M. ElHefnawi, Performance of machine learning approaches on prediction of esophageal varices for Egyptian chronic hepatitis C patients, Informatics in Medicine Unlocked, 17, 2019, 1-7.
G. G. Agarwal, A. K. Singh, V. Venkatesh and N. Wal, Determination of risk factors for hepatitis C by the method of random forest. Annal of Infectious Disease and Epidemiology, 4(1), 2019, 1-4.
N. Metwally, E. AbuSharekh and S. Abu-Naser, Diagnosis of hepatitis virus using artificial neural network, International Journal for Academic Development, 2, 2018, 1-7.
N. H. Barakat, S. H. Barakat and N. Ahmed, Prediction and staging of hepatic fibrosis in children with hepatitis C virus: A machine learning approach, Healthcare Informatics Research, 25(3), 2019, 173-181.
https://archive.ics.uci.edu/ml/datasets/Hepatitis+C+Virus+%28HCV%29+for+Egyptian+patients
https://scikit-learn.org/stable/modules/preprocessing.html#normalization
https://www.rdocumentation.org/packages/SciencesPo/versions/1.3.5/topics/normalize
Scikit-learn, “Scikit-learn: Machine Learning in Python,” 2016.
http://topepo.github.io/caret/index.html.
https://en.wikipedia.org/wiki/Confusion_matrix
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.
C. Ray and A. Ray, Intrapartum cardiotocography and its correlation with umbilical cord blood pH in term pregnancies: a prospective study, International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 6, 2017, 2745-2752
Refbacks
- There are currently no refbacks.