Optimal Control of the Double Inverted Pendulum on a Cart: A Comparative Study of Explicit MPC and LQR

Tunde Mufutau Tijani, Isah Abdulrasheed Jimoh


This paper proposes the use of explicit model predictive control (eMPC) method for the stabilising control of the nonlinear underactuated double inverted pendulum on a cart system. To access the effectiveness of the proposed method, a linear quadratic regulator (LQR) was used as a benchmark. The study showed that the proposed eMPC can provide significantly better performance than LQR under various conditions of the system. This superior performance is especially significant in terms of the system outputs peak values reduction. Nonetheless, it was pointed out that there is a need to consider other eMPC methods that lead to further reduction of the number of critical regions and more efficient exploration of the parameter space for the stabilising control of the double inverted pendulum system.


Double inverted pendulum; Explicit model predictive control; Linear quadratic regulator; Stabilising control.

Article Metrics

Abstract view : 526 times
PDF - 195 times

Full Text:



A. A. Voevoda, A. N. Koryukin and A. V. Chekhonadskikh, Reducing the stabilizing control order for a double inverted pendulum, Optoelectronics, Instrumentation and Data Processing, 48(6), 2012, 593-604.

S. Jadlovská and J. Sarnovský, Classical double inverted pendulum - A complex overview of a system, IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Slovakia, 2012, 103-108

R. Altendorfer, U. Saranli, H. Komsuoglu, D. Koditschek, H.B. Brown, M. Buehler, N. Moore, D. McMordie and R. Full, Evidence for spring loaded inverted pendulum running in a hexapod robot, Experimental Robotics VII, Berlin, Heidelberg: Springer, 2001, 291-302.

T. Sugihara, Y. Nakamura and H. Inoue, Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control, Proceedings of 2002 IEEE International Conference on Robotics and Automation, Washington, USA, 2002, 1404-1409.

A. D. Kuo, The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective, Human Movement Science, 26(4), 2007, 617-656.

S. C. Peters, J. E. Bobrow and K. Iagnemma, Stabilizing a vehicle near rollover: An analogy to cart-pole stabilization, 2010 IEEE International Conference on Robotics and Automation, Anchorage, USA, 2010, 5194-5200.

Y. N. Zolotukhin and A. A. Nesterov, Inverted pendulum control with allowance for energy dissipation, Optoelectronics, Instrumentation and Data Processing, 46(5), 2010, 401-407.

S. Kavirayani and G. V. Kumar, Pollen rate based control and stabilization of double inverted pendulum, Procedia Computer Science, 92, 2016, 589-594.

J. Y. Kim, I. W. Park and J. H. Oh, Walking control algorithm of biped humanoid robot on uneven and inclined floor, Journal of Intelligent and Robotic Systems, 48(4), 2007, 457-484.

E. C. Whitman and C. G. Atkeson, Control of a walking biped using a combination of simple policies, 9th IEEE-RAS International Conference on Humanoid Robots, Paris, France, 2009, 520-527.

C. Liu and C. G. Atkeson, Standing balance control using a trajectory library, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009, 3031-3036.

P. Shen, LQR control of double inverted pendulum based on genetic algorithm, 9th World Congress on Intelligent Control and Automation, Taipei, Taiwan, 2011, 386-389.

J. Zhang and W. Zhang, LQR self-adjusting based control for the planar double inverted pendulum, Physics Procedia, 24, 2012, 1669-1676.

D. T. Ratnayake and M. Parnichkun, LQR-based stabilization and position control of a mobile double inverted pendulum, IOP Conference Series: Materials Science and Engineering, 886(1), 2020, 012034.

H. Li, M. Zhang and C. Guo, Cloud-model PID control of double inverted pendulum based on information fusion, 35th Chinese Control Conference (CCC), Chengdu, China, 2016, 574-578.

Y. Liu and S. Zhang, Fuzzy control of double inverted pendulum based on the genetic algorithm, IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, Australia, 2013, 1810-1813.

W. Chen, Q. Li and R. Gu, Chaos optimization neural network control for the stability of double inverted pendulum, The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China, 2010, 491-494.

Q. Qian, D. Dongmei, L. Feng and T. Yongchuan, Stabilization of the double inverted pendulum based on discrete-time model predictive control, IEEE International Conference on Automation and Logistics (ICAL), Chongqing, China, 2011, 243-247.

X. Xia, J. Xia, M. Gang, Q. Zhang and J. Wang, Discrete dynamics-based parameter analysis and optimization of fuzzy controller for inverted pendulum systems based on chaos algorithm, Discrete Dynamics in Nature and Society, 2020, 3639508.

G. P. Gil, W. Yu and H. Sossa, Reinforcement learning compensation-based PD control for a double inverted pendulum, IEEE Latin America Transactions, 17(2), 2019, 323-329.

B. Elkinany, A. Mohammed, S. Krafes and Z. Chalh, Backstepping controller design with a quadratic error for a double inverted pendulum, International Journal of Modelling, Identification and Control, 34, 2020, 33-40.

B. Elkinany, M. Alfidi, R. Chaibi and Z. Chalh, TS fuzzy system controller for stabilizing the double inverted pendulum, Advances in Fuzzy Systems, 2020, 8835511.

I. M. Mehedi, U. Ansari and U. M. AL-Saggaf, Three degrees of freedom rotary double inverted pendulum stabilization by using robust generalized dynamic inversion control: Design and experiments, Journal of Vibration and Control, 2020, https://doi.org/10.1177/1077546320915333.

A. Gupta, S. Bhartiya and P.S.V. Nataraj, A novel approach to multiparametric quadratic programming, Automatica, 47(9), 2011, 2112-2117.

A. Suardi, S. Longo, E. C. Kerrigan and G. A. Constantinides, Robust explicit MPC design under finite precision arithmetic, IFAC Proceedings Volumes, 47(3), 2014, 2939-2944.

P. Bakaráč, J. Holaza, M. Kalúz, M. Klaučo, J. Löfberg and M. Kvasnica, Explicit MPC based on approximate dynamic programming, European Control Conference (ECC), Limassol, Cyprus, 2018, 1172-1177.

B. Kouvaritakis and M. Cannon, Model Predictive Control Classical, Robust and Stochastic. Springer International Publishing, 2016.

P. A. Moshkenani, Explicit model predictive control for higher order systems, PhD Thesis, Norwegian University of Science and Technology, 2020.

V. Nevistić and J. A. Primbs, Finite receding horizon linear quadratic control: A unifying theory for stability and performance analysis, California Institute of Technology, USA, 1997 (Unpublished).

E. Pistikopoulos, On-line optimization via off-line optimization! - a guided tour to parametric programming, Aspen World, 2000.

A. Bemporad, F. Borrelli and M. Morari, Model predictive control based on linear programming - the explicit solution, IEEE Transactions on Automatic Control, 47(12), 2002, 1974–1985.

A. Alessio and A. Bemporad, A survey on explicit model predictive control, Nonlinear model predictive control, Berlin, Heidelberg: Springer, 2009, 345-369.

A. Bemporad, M. Morari, V. Dua and E. N. Pistikopoulos, The explicit solution of model predictive control via multiparametric quadratic programming, Proceedings of the American Control Conference, Chicago, USA, 2000.

C. Feller, T. A. Johansen and S. Olaru, An improved algorithm for combinatorial multi-parametric quadratic programming, Automatica, 49(5), 2013, 1370-1376.

P. Ahmadi-Moshkenani, T. A. Johansen and S. Olaru, Combinatorial approach toward multiparametric quadratic programming based on characterizing adjacent critical regions, IEEE Transactions on Automatic Control, 63(10), 2018, 3221-3231.

A. Bemporad, M. Morari, V. Dua and E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems, Automatica, 38(1), 2002, 3-20.

N. S. Bhangal, Design and performance of LQR and LQR based fuzzy controller for double inverted pendulum system, Journal of Image and Graphics, 1(3), 2013, 143-146.

H. Wang, H. Zhou, D. Wang and S. Wen, Optimization of LQR controller for inverted pendulum system with artificial bee colony algorithm, Proceedings of the 2013 International Conference on Advanced Mechatronic Systems, Luoyang, China, 2013, 158-162.

L. Wang, H. Ni, W. Zhou, P. M. Pardalos, J. Fang and M. Fei, MBPOA-based LQR controller and its application to the double-parallel inverted pendulum system, Engineering Applications of Artificial Intelligence, 36, 2014, 262-268.

H. H. Bilgic, M. A. Sen and M. Kalyoncu, Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm, Journal of Vibroengineering, 18(6), 2016, 3684-3694.

P. O. Scokaert and J. B. Rawlings, Constrained linear quadratic regulation, IEEE Transactions on Automatic Control, 43(8), 1998, 1163-1169.

F. L. Lewis and V. L. Syrmos, Optimal Control. John Wiley & Sons, 1995.

F. L. Lewis and K. G. Vamvoudakis, Reinforcement learning for partially observable dynamic processes: Adaptive dynamic programming using measured output data, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41, 2011, 14–25.

MathWorks, Choose sample times and horizon, https://uk.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html (accessed 18 December 2020).


  • There are currently no refbacks.