Modelling of Microfluidic Channel Staging Dielectrophoretic Disjunction of Particles from Living Cells

M. R. Nisha, K. N. Madhusoodanan


Microfluidic channel form fluid manipulating units in Lab on chip systems by performing fluidic operations like transportation, sorting, mixing and separation of liquid samples by saving time and economy in a consistent way. A model of a microfluidic channel meant for separation of blood cells into red blood cells and platelets is designed and modelled using Comsol Multiphysics. The approach exploits the effect of an induced Dielectrophoretic (DEP) force on particles moving through a microfluidic channel driven by non-uniform electric field supplied by serial array microelectrodes. The tragectories of blood cells through the microchannel is modelled by applying an actuating voltage of ±3 V and ±5 V. The non-uniform electric field distribution and the DEP force inside the microchannel causes separation of blood cells. We succeeded to plot the tragectories of separated red blood cells and platelets under the influence of DEP force. The size-sensitive separation of particles from blood cells using a microchannel in the presence of non-uniform electric filed is modelled and simulated by changing the strength of applied electric field.


Dielectric particle disjunction; Dielectrophoretic force; DNA analysis; Lab on chip; Microfluidic channel; Size sensitive separation.

Article Metrics

Abstract view : 270 times
PDF - 104 times

Full Text:



P. C. H. Li, Microfluidic Lab-on-a-chip for Chemical and Biological Analysis and Discovery. Boca Raton, FL: CRC Press, 2006.

T. Zhang, K. Chakraborty and R. B. Fair, Microelectrofluidic Systems. Boca Raton, FL: CRC Press, 2002.

D. R. Reyes, D. Iossifidis, P. A. Auroux and P. A. Manz, Micro total analysis systems: 1. Introduction, theory, and technology, Analysis Chemistry, 74, 2623–2636, 2002.

A. Auroux, D. R. Reyes, D. Iossifidis and P. A. Manz, Micro total analysis systems: 2. Analytical standard operations and applications, Analysis Chemistry, 74, 2637-2652, 2002.

J. West, M. Becker, S. Tombrink and A. Manz, Micro total analysis systems: latest achievements, Analysis Chemistry, 80, 4403-4419, 2008.

G. J. Kost, Principles and Practice of Point-of-care Testing. Philadelphia, PA: Lippincott Williams and Wilkins, 2002.

J. Steigert, T. Brenner, M. Grumann, L. Riegger ,S. Lutz, R. Zengerle and J. Ducree, Integrated siphon-based metering and sedimentation of whole blood on hydrophilic lab-on-a-disk, Biomedical Microdevices, 9, 675-679, 2007.

A. Oki, M. Takai, H. Ogawa, Y. Takakura, T. Fukazawa, J. Kikuchi, Y. Ito, T. Ichiki and Y. Horiike, Healthcare chip for checking health condition from analysis of trance blood collected by painless needle, Japan Journal of Applied Physics, 42, 3722–3727, 2003.

J. Steigert, M. Grumann, M. Dube, W. Streule, L. Riegger, T. Brenner, P. Koltay K. Mittmann, R. Zengerle and J. Ducree, Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics, Sensors and Actuators A: Physical, 130, 228–233, 2006.

J. Takagi, M. Yamada, M. Yasuda and M. Seki, Continuous particle separation in a microchannel having asymmetrical arranged multiple branches, Lab on a Chip, 5, 778–784, 2005.

Z. H. Fan and A. J. Ricco, Plastic microfluidic devices for DNA and protein analyses, in BioMEMS and Biomedical Nanotechnology: Micro/Nano Technology for Genomics and Proteomics, vol. 2, M. Ferrari, M. Ozkan, and M. J. Heller, Ed. Berlin: Springer, 2007, pp. 311-328.

H. A. Wagenknecht, Photoinduced electrontransportin DNA, in Nanobiotechnology: Bioinspired Devices and Materials of the Future, Totowa, NJ: Hamana Press, 2008, pp 89-106.

T. G. Drummond, M. G. Hill and J. K. Barton, Electrochemical DNA sensors, Nature Biotechnology, 21, 1192– 1199, 2003

D. Porath, G. Cuniberti and R. Di Felice, Charge transport in DNA-based devices, in Top Current Chemistry: Long Range Transfer in DNA II, vol. 237, G. B. Schuster, Ed. Berlin: Springer, 2004, pp. 183–227.

K. Khashayar, N. Saeid, B. Sara, M. Arnan and K. Z. Kourosh, Dielectrophoretic platforms for bio-microfluidic systems, Biosensors and Bioelectronics, 26,1800-1814, 2011

T. B. Jones, Electromechanics of Particles. Cambridge: Cambridge University Press, 1995.

M. Hywel and G. G. Nicolas, AC Electrokinetics: Colloids and Nanoparticles. Boston, MA: Research Studies Press, 2003.

B. J. Kirby, Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge: Cambridge University Press, 2010.

L. M. Broche, F. H. Labeed, and M. P. Hughes, Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data, Physics in Medicine and Biology, 50,2267-74, 2005.

M. Egger and E. Donath, Electrorotation Measurements of Diamide-Induced Platelet Activation Changes, Biophysical Journal, 68, 364–372, 1995.

S. Park, Y. Zhang, T.H. Wang and S. Yang, Continuous Dielectrophoretic bacterial separation and concentration from physiological media of high conductivity, Lab on a Chip, 11, 2893–2900, 2011.


  • There are currently no refbacks.