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Abstract: In this paper, optimal control theory is applied to Herpes Simplex Virus-II transmission model given by a system 
of non-linear ordinary differential equations. Optimal control strategy was employed to study the level of effort needed to 
control the transmission dynamics of HSV-II diseases using three controls; prevention, screening and treatment control 
strategies. The necessary conditions for the existence of the optimal controls was established using Pontryagin’s Maximum 
Principle. Optimal control system was performed with help of Runge-Kutta forward-backward sweep numerical approximation 
method. Finally, numerical simulations reveal that a combination of prevention, screening and treatment is the most effective 
strategy to eradicate the disease from the community.  
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1. INTRODUCTION 
Herpes is caused by Herpes simplex virus (HSV)[1]. There are two types of herpes namely Herpes Simplex Type-I (HSV-I) 
and Herpes Simplex Type-II (HSV-II). HSV-I is predominantly orally transmitted and it causes orolabial herpes (i.e. cold 
sores). On the other hand, HSV-II is one of the most common sexually transmitted infections worldwide and it cause genital 
herpes. The majority of HSV-II infections are transmitted by persons who are unaware that they have the infection or who are 
asymptomatic when transmission occurs [2]. Worldwide, an estimated 19.2 million new HSV-II infections occurred among 
adults and adolescents aged 15-49 years in 2012 with the highest rates among younger age groups. HSV-II is a lifelong 
infection and the estimated global HSV-II prevalence of 11.3% translates into an estimated 417 million people with the 
infection in 2012. The prevalence of HSV-II is highest in the WHO African Region (31.5%), followed by the Region of the 
Americas (14.4%) [3]. 

Several mathematical models have been developed and analyzed to control the transmission dynamics of HSV [4]. Some 
of them formulated a deterministic model to describe the dynamics of the disease that helped them to propose disease control 
mechanism and also described the transmission dynamics of the diseases [5, 6]. In [7], a mathematical model for the spread of 
HSV-II was proposed and analyzed by incorporating all the relevant biological details and poor treatment adherence. The study 
demonstrates that though time dependent control will be effective on controlling new HSV-II cases it may not be sustainable 
for certain time intervals.  

Recently, Luis Almonte-Vega [8] developed and analyzed a mathematical model to study the transmission and control of 
HSV-II among the U.S. population between the ages of 15–49 when there are options to treat individuals in different stages of 
their pathogenicity. Also, this work are to studied the effect on HSV-II transmission dynamics and evaluated and compared 
the cost-effectiveness of treating HSV-II infections in both constitutional and non-constitutional stages (new strategy) against 
the current conventional treatment protocol for treating patients in the non-constitutional stage (current strategy).The results 
distinguished model parameter regimes where each of the two treatment strategies can optimize the available resources and 
consequently gives the long-term reduced cost associated with each treatment and incidence. Studies such as [9, 10] constructed 
a mathematical model of HSV-II for vaccination and developed a vaccine against HSV-II to reduce the infection from the 
community. Many of these models were described by systems of ordinary differential equations and formulated under 
reasonable assumptions. But in their studies, none of them considered optimal control strategies to control the disease. 
Therefore, the aim of this work is to study the effect of incorporating three optimal control strategies; prevention, screening 
and treatment in the transmission dynamics of HSV-II model formulated in [11]. 
 
2. MODEL ASSUMPTION AND DESCRIPTION 
The total population, represented by 𝑁𝑁(𝑡𝑡), is divided into six sub-population compartments with respect to their disease status 
in the system. Those are: 
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 Susceptible individuals (𝑆𝑆) are those who are not infected by the disease pathogen but there is a possibility to be 

infectious. 
 Exposed individuals (𝐸𝐸) are individuals who are already infected but are not yet infectious. 
 Asymptomatic individuals (𝐴𝐴) are individuals those who are both infected and infectious but do not show any 

symptoms of the disease. 
 Symptomatic individuals (𝐼𝐼 ) are individuals those who are infectious and who fully developed disease symptoms.  
 Herpes Simplex Virus-II individuals (𝐻𝐻) are individuals with HSV-II diseases.  
 Recovered individuals (𝑅𝑅) are individuals who recovered from the diseases.  

 
Thus, the total population becomes 𝑁𝑁(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) + 𝐸𝐸(𝑡𝑡) + 𝐴𝐴(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝐻𝐻(𝑡𝑡) + 𝑅𝑅(𝑡𝑡). The model in [11] assumed that 

susceptible population is increased by the recruitment of individuals into the population at a rate  Π. Individuals from 
susceptible class move to exposed sub class with per capita rate 𝜂𝜂 of becoming infectious. Exposed individuals may progress 
to the symptomatic infectious with probability  𝑝𝑝, and to asymptomatic infectious with probability  (1 − 𝑝𝑝). Asymptomatic 
individuals are typically assumed to be infectious at a reduced transmission rate  𝑞𝑞𝑞𝑞. The susceptible individuals are infected 
by asymptomatic or symptomatically infected individuals with a force of infection Λ = 𝛽𝛽[𝐼𝐼+𝑞𝑞𝑞𝑞]

𝑁𝑁
  where 𝛽𝛽 is the contact rate and 

 𝑞𝑞  is the transmission coefficient for the asymptomatic individuals. Some of the asymptomatic and symptomatic individual’s 
progress to Herpes simplex virus-II at a rate 𝜑𝜑  and 𝜙𝜙 respectively and others recover naturally through body immune system 
at a rate 𝛾𝛾 and 𝛼𝛼 respectively. The HSV -II is treated at a rate  𝛿𝛿  and move to recovery class. Individuals will die due to disease 
after reaching the full blown HSV-II stage by the rate  𝜉𝜉. The recovered individuals may lose immunity and return to the 
susceptible individuals at a rate  𝜔𝜔. In all compartments,  𝜇𝜇 is the natural mortality rate of individuals. 

The model in [11] is thus governed by the following system of non-linear ordinary differential equations: 
 
 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= Π − Λ𝑆𝑆 − 𝜇𝜇𝜇𝜇 + 𝜔𝜔𝜔𝜔, 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= Λ𝑆𝑆 − (𝜂𝜂 + 𝜇𝜇)𝐸𝐸, 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝜂𝜂𝜂𝜂 − (𝜑𝜑 + 𝛾𝛾 + 𝜇𝜇)𝐴𝐴,  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝑝𝑝𝑝𝑝 − (𝜙𝜙 + 𝛼𝛼 + 𝜇𝜇)𝐼𝐼,(1)  (1)

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜑𝜑𝜑𝜑 + 𝜙𝜙𝜙𝜙 − (𝛿𝛿 + 𝜇𝜇 + 𝜉𝜉)𝐻𝐻,  

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾 + 𝛼𝛼𝛼𝛼 + 𝛿𝛿𝛿𝛿 − (𝜔𝜔 + 𝜇𝜇)𝑅𝑅.  
 

The non-negative initial conditions of the system of model Equation (1) are denoted by   𝑆𝑆(0) ≥ 0, 𝐸𝐸(0) > 0, 𝐴𝐴(0) >
0, 𝐼𝐼(0) > 0,   𝐻𝐻(0) > 0, 𝑅𝑅(0) > 0. Furthermore, the wellpossedness of the model Equation (1), implies invariant region, 
existence and uniqueness of the solution of model equation was determined clearly and briefly in the existing model [11]. 

3. EQUILIBRIUM POINT 
In order to understand the transmission dynamics of the model, it is necessary to determine equilibrium points of the solution 
region. An equilibrium solution is a steady state solution of the model Equation (1) in the sense that if the system begins at 
such a state, it will remain there for all times. In other words, the population sizes remain unchanged and thus the rate of change 
for each population vanishes [12]. The model equations have two equilibrium points, disease free equilibrium point and 
endemic equilibrium points.  

Disease free equilibrium points are steady state solutions where there is no disease in the population. To find the disease 
free equilibrium, we equated the right hand sides of model Equation (1) to zero, evaluating it at 𝐸𝐸 = 𝐼𝐼 = 𝐴𝐴 = 𝐻𝐻 = 𝑅𝑅 = 0 and 
solving the equations, we get: 
 Ε0 = {𝑆𝑆0, 𝐸𝐸0, 𝐴𝐴0, 𝐼𝐼0, 𝐻𝐻0 , 𝑅𝑅0 } = � �Πμ� , 0, 0 0, 0, 0 �.  

 
while the endemic equilibrium point 𝐸𝐸1 is a steady state solution where there is a disease in the population. The endemic 
equilibrium point is obtained by setting right hand sides of the model Equation (1) to zero. Then solving for state variables we 
get: 
 
 Ε1 = (𝑆𝑆∗,    𝐸𝐸∗,    𝐴𝐴∗,       𝐼𝐼∗,      𝐻𝐻∗,    𝑅𝑅∗).  

 
where 

𝑆𝑆∗ =
[𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎Π]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
, 

𝐸𝐸∗ =
[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ΠΛ∗]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
, 

𝐴𝐴∗ =
[𝑐𝑐𝑐𝑐𝑐𝑐ΠηΛ∗(1 − 𝑝𝑝)]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
, 
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𝐼𝐼∗ =
[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ΠηΛ∗]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
, 

𝐻𝐻∗ =
[ΠηΛ∗[𝜑𝜑𝜑𝜑(1 − 𝑝𝑝) + 𝜙𝜙𝜙𝜙𝜙𝜙]]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
, 

𝑅𝑅∗ =
[ΠηΛ∗[dcγ(1 − 𝑝𝑝) + αbd𝑝𝑝 + 𝛿𝛿𝛿𝛿𝛿𝛿(1 − 𝑝𝑝) + δϕb𝑝𝑝]]

�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(Λ∗ + 𝜇𝜇) + Λ∗𝜂𝜂𝜂𝜂[𝑐𝑐𝑐𝑐(1 − 𝑝𝑝) − 𝑔𝑔𝑔𝑔𝑔𝑔]�
. 

 
Here  𝑎𝑎 = (𝜂𝜂 + 𝜇𝜇), 𝑏𝑏 = (𝜑𝜑 + 𝛾𝛾 + 𝜇𝜇), 𝑐𝑐 = (𝜙𝜙 + 𝛼𝛼 + 𝜇𝜇),𝑑𝑑 = (𝛿𝛿 + 𝜇𝜇), 𝑒𝑒 = (𝜔𝜔 + 𝜇𝜇) and Λ∗ = 𝛽𝛽[𝐼𝐼+𝑞𝑞𝑞𝑞]

𝑁𝑁
. 

4. REPRODUCTION NUMBER 
The basic reproduction number denoted by ℜ0 and is defined as the expected number of people getting secondary infection 
among the whole susceptible population. It is determined using the next generation matrix and defined as the largest eigenvalue 
of the next generation matrix. The formulation of this matrix involves classification of all compartments of the model into two 
classes: infected and non-infected compartments [13]. This number determines the potential for the spread of disease within a 
population. When ℜ0 < 1, each infected individual produces on average less than one new infected individual so that the 
disease is expected to die out. On the other hand if  ℜ0 > 1, then each individual produces more than one new infected 
individual so that the disease is expected to continue spreading in the population. This means that the threshold quantity for 
eradicating the disease is to reduce the value of  ℜ0   to less than one.   

Then by the principle of next-generation matrix, we obtained 
 

 𝑓𝑓𝑖𝑖 = �

𝛽𝛽(𝐼𝐼 + 𝑞𝑞𝑞𝑞)𝑆𝑆 𝑁𝑁⁄
0
0
0

� and 𝑣𝑣𝑖𝑖 =

⎣
⎢
⎢
⎡

(𝜂𝜂 + 𝜇𝜇)𝐸𝐸
−(1 − 𝑝𝑝)𝜂𝜂𝜂𝜂 + (𝜑𝜑 + 𝛾𝛾 + 𝜇𝜇)𝐴𝐴

−𝑝𝑝𝜂𝜂𝜂𝜂 + (𝜙𝜙 + 𝛼𝛼 + 𝜇𝜇)𝐼𝐼
−𝜑𝜑𝜑𝜑 − 𝜙𝜙𝜙𝜙 + (𝛿𝛿 + 𝜇𝜇 + 𝜉𝜉)𝐻𝐻 ⎦

⎥
⎥
⎤
. 

 
The Jacobian matrices of 𝑓𝑓𝑖𝑖 and 𝑣𝑣𝑖𝑖 evaluated at Disease Free Equilibrium (DFE) are given by 𝐹𝐹 and 𝑉𝑉, respectively, such that 

 

 𝐹𝐹 = �

0 𝛽𝛽𝛽𝛽 𝛽𝛽 0
0 0 0 0
0 0 0 0
0 0 0 0

� and 𝑉𝑉 = �

𝑎𝑎 0 0 0
−(1 − 𝑝𝑝)𝜂𝜂 𝑏𝑏 0 0

−𝑝𝑝𝑝𝑝 0 𝑐𝑐 0
0 −𝜑𝜑 −𝜙𝜙 𝑑𝑑

�   

 
It can be verified that the matrix 𝑉𝑉 is non-singular as its determinant  𝑑𝑑𝑑𝑑𝑑𝑑[𝑉𝑉] = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is non-zero and after some algebraic 
computations its inverse matrix is constructed as 
 

𝑉𝑉−1 =

⎣
⎢
⎢
⎡

[1 𝑎𝑎⁄ ] 0 0 0
[(1 − 𝑝𝑝)𝜂𝜂 𝑎𝑎𝑎𝑎⁄ ] [1 𝑏𝑏⁄ ] 0 0

[𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎⁄ ] 0 [1 𝑐𝑐⁄ ] 0
[−(𝜙𝜙𝜙𝜙𝜙𝜙𝜙𝜙 + 𝑐𝑐𝑐𝑐(1 − 𝑝𝑝)𝜂𝜂) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎⁄ ] [𝜑𝜑 𝑏𝑏𝑑𝑑⁄ ] [𝜙𝜙 𝑐𝑐𝑐𝑐⁄ ] [1 𝑑𝑑⁄ ]⎦

⎥
⎥
⎤
. 

 
The product of the matrices 𝐹𝐹 and 𝑉𝑉−1 can be computed as: 
 

𝐹𝐹𝑉𝑉−1 == �

[(𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(1 − 𝑝𝑝) + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽) 𝑎𝑎𝑎𝑎𝑎𝑎⁄ ] [𝛽𝛽𝛽𝛽 𝑏𝑏⁄ ] [𝛽𝛽 𝑐𝑐⁄ ] 0
0 0 0 0
0 0 0 0
0 0 0 0

�. 

 
Now it is possible to calculate the eigenvalue to determine the basic reproduction number ℜ0 by taking the spectral radius of 
the matrix  𝐹𝐹𝑉𝑉−1. Thus, the eigenvalues are computed by evaluating 𝑑𝑑𝑑𝑑𝑑𝑑[𝐹𝐹𝑉𝑉−1 − 𝜓𝜓𝜓𝜓] = 0 or equivalently solving 

 

�

[(𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂(1 − 𝑝𝑝) + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽) 𝑎𝑎𝑎𝑎𝑎𝑎⁄ ] − 𝜓𝜓 [𝛽𝛽𝛽𝛽 𝑏𝑏⁄ ] [𝛽𝛽 𝑐𝑐⁄ ] 0
0 −𝜓𝜓 0 0
0 0 −𝜓𝜓 0
0 0 0 −𝜓𝜓

� = 0. 

 
Thus, after some algebraic computations the basic reproduction number of the model is: 
 

ℜ0 = 𝛽𝛽𝛽𝛽[𝑞𝑞𝑞𝑞(1−𝑝𝑝)+𝑝𝑝𝑝𝑝]
[𝑎𝑎𝑎𝑎𝑎𝑎]

. 
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The stability of an equilibrium point determines whether or not, the solutions nearby the equilibrium point remains nearby, 
gets closer or get further away. Thus, both local and global stability of the disease free equilibrium and endemic equilibrium 
point of the model equation was established using basic reproduction number in [11]. 

5. OPTIMAL CONTROL PROBLEM FORMULATION AND ANALYSIS 
Model Equation (1) is extended by introducing control function; 𝑢𝑢1(𝑡𝑡) represents prevention control strategy (preventing 
susceptible individuals from exposing to the diseases), 𝑢𝑢2(𝑡𝑡) represents screening individuals by effectively using a pap test 
to reduce transmission dynamics of the disease and 𝑢𝑢3(𝑡𝑡) represents the treatments of infectious individuals. Time is specified 
and is relatively short and is given by 𝑡𝑡 ∈ [0,𝑇𝑇], 𝑇𝑇 is the terminal time. 

The corresponding state system for the model Equation (1) is given as follows:  
 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= Π + 𝜔𝜔𝜔𝜔 − (1 − 𝑢𝑢1)Λ𝑆𝑆 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢1)Λ𝑆𝑆 − (1 − 𝑢𝑢2)𝜂𝜂𝜂𝜂 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂𝜂𝜂 − (1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 − (𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝𝑝𝑝 − (1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛼𝛼) − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 + (1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜇𝜇 + 𝜉𝜉)𝐻𝐻,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 + (𝑢𝑢3 + 𝛼𝛼)𝐼𝐼 + (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜔𝜔 + 𝜇𝜇)𝑅𝑅.

 (2)  

With a bounded Lebesgue measurable control set is represented as  
 

 Ω = ��𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡),𝑢𝑢3(𝑡𝑡)� ∈ �𝐿𝐿∞(0,𝑇𝑇)�3: 0 ≤ 𝑢𝑢𝑖𝑖(𝑡𝑡) ≤ 1 − 𝜖𝜖,∀𝑡𝑡∈ [0,𝑇𝑇]�.    
 

The controls are bounded between 0 and 1. When the controls vanish, it means no extra measures are implemented for the 
reduction of the disease. When the controls take the maximum value 1, it means that the intervention is 100% perfectly 
implemented which is not true in reality and thus we assumed  𝑢𝑢𝑖𝑖 ≤ 1 − 𝜖𝜖, 𝑖𝑖 = 1,2,3 where 𝜖𝜖 ≪ 1 denotes a positive real 
number.  

The optimal control problem (Equation (2)) is to minimize the objective functional 
 

 𝐽𝐽(𝑢𝑢) = ∫𝑇𝑇0 [𝑔𝑔(𝜙𝜙,𝑢𝑢)]𝑑𝑑𝑑𝑑 = ∫𝑇𝑇0 �𝑀𝑀1𝐸𝐸 + 𝑀𝑀2𝐴𝐴 + 𝑀𝑀3𝐼𝐼 + 𝑀𝑀4𝐻𝐻 + 𝑤𝑤1𝑢𝑢1
2

2
+ 𝑤𝑤2𝑢𝑢2

2

2
+ 𝑤𝑤3𝑢𝑢3

2

2
� 𝑑𝑑𝑑𝑑 → 𝑚𝑚𝑚𝑚𝑚𝑚. (3)  

 
where  𝑀𝑀𝑖𝑖 and 𝑤𝑤𝑗𝑗  for 𝑖𝑖 = 1,2,3,4 and 𝑗𝑗 = 1,2,3 are positive weights. The constants 𝑤𝑤1,𝑤𝑤2 and 𝑤𝑤3 measures the cost of effort 
required for the implementation of each of the three control measures adopted while 𝑀𝑀1,𝑀𝑀2,𝑀𝑀3 and 𝑀𝑀4 measures the relative 
importance of reducing the associated classes on the spread of the disease. The goal is to determine an optimal control 𝑢𝑢1∗ ,𝑢𝑢2∗ 
and 𝑢𝑢3∗   such that:  
 
 𝐽𝐽(𝑢𝑢1∗,𝑢𝑢2∗ ,𝑢𝑢3∗) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐽𝐽(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3):𝑢𝑢1,𝑢𝑢2,𝑢𝑢3 ∈ Ω} (4)  

 

5.1. Existence of an Optimal Controls 
Theorem 1: Given 𝐽𝐽(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) subject to Equation (2) with (𝑆𝑆0,𝐸𝐸0,𝐴𝐴0, 𝐼𝐼0,𝐻𝐻0,𝑅𝑅0) ≥ (0,0,0,0,0,0), then there exists an 
optimal control 𝑢𝑢∗ and corresponding (𝑆𝑆∗,𝐸𝐸∗,𝐴𝐴∗, 𝐼𝐼∗,𝐻𝐻∗,𝑅𝑅∗), that minimizes 𝐽𝐽(𝑢𝑢) over Ω. The proof is based on the following 
assumptions and by Fleming and Rishel's [14, 15, 16] theorem.   
 

a) The set of controls and corresponding state variable is nonempty.  
b) The measurable control set is convex and closed.  
c) All the right hand sides of the state system is continuous, bounded above by a sum of bounded control and state, and 

can be written as a linear function of 𝑢𝑢 with coefficients depending on time and state.  
d) The integrand 𝑔𝑔(𝜙𝜙,𝑢𝑢) of the objective functional is convex.  
e) There exist constants 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 ≥ 0 and 𝜏𝜏∗ ≥ 1 such that the integrand of the objective functional satisfies 

𝑔𝑔(𝜙𝜙,𝑢𝑢) ≥ 𝑐𝑐1 + 𝑐𝑐2|𝑢𝑢1|𝜏𝜏 + 𝑐𝑐3|𝑢𝑢2|𝜏𝜏 + 𝑐𝑐4|𝑢𝑢3|𝜏𝜏 .  
 
Proof:  

a) Ω is a nonempty set of measurable functions on 0 ≤ 𝑇𝑇 with values in real numbers ℝ. The system Equation (2) has 
bounded coefficients and hence any solutions are bounded on [0,𝑇𝑇]. The corresponding solutions for Equation (2) 
exists.  

b) Assume that 𝑢𝑢1,𝑢𝑢2,𝑢𝑢3 ∈ Ω such that ∥ 𝑢𝑢𝑖𝑖 ∥≤ 1 − 𝜖𝜖, 𝑖𝑖 = 1,2,3. Now, let us take any controls 𝑢𝑢1,𝑢𝑢2 ∈ Ω and Γ ∈ [0,1], 
then 0 ≤ Γ𝑢𝑢1 + (1 − Γ)𝑢𝑢2. Additionally, we observe that ∥ Γ𝑢𝑢1 ∥≤ Γ ∥ 𝑢𝑢1 ∥≤ Γ and ∥ (1 − Γ)𝑢𝑢2 ∥≤ (1 − Γ) ∥ 𝑢𝑢2 ∥
≤ (1 − Γ).Then for any Γ ∈ [0,1],  
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∥ Γ𝑢𝑢1 + (1 − Γ)𝑢𝑢2 ∥, 

≤∥ Γ𝑢𝑢1 ∥ +∥ (1 − Γ)𝑢𝑢2 ∥, 
≤ Γ ∥ 𝑢𝑢1 ∥ +(1 − Γ) ∥ 𝑢𝑢2 ∥, 

≤ Γ + (1 − Γ) = 1. 
 

Hence, 0 ≤ Γ𝑢𝑢1 + (1 − Γ)𝑢𝑢2 ≤ 1, for all 𝑢𝑢1,𝑢𝑢2 ∈ Ω and Γ ∈ [0,1]. Therefore, the control space Ω = {𝑢𝑢 =
(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3),0 ≤ 𝑢𝑢𝑖𝑖 ≤ 1 − 𝜖𝜖, 𝑖𝑖 = 1,2,3} and 𝑡𝑡 ∈ [0,𝑇𝑇] is convex and closed by definition.  

 
c) By definition, each right hand side of system Equation (2) is continuous. All variables 𝑆𝑆,𝐸𝐸,𝐴𝐴, 𝐼𝐼,𝐻𝐻,𝑅𝑅 and 𝑢𝑢𝑖𝑖 are 

bounded on [0,𝑇𝑇]. To prove the boundedness we use the method in [17], and the super-solutions of Equation (2) is 
written as:  
 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= Π + 𝜔𝜔𝑅𝑅�,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢1)Λ𝑆𝑆,�
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂𝐸𝐸� ,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝𝐸𝐸� ,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢3)𝜑𝜑𝐴̅𝐴 + (1 − 𝑢𝑢3)𝜙𝜙𝐼𝐼 ,̅
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (𝑢𝑢3 + 𝛾𝛾)𝐴̅𝐴 + (𝑢𝑢3 + 𝛼𝛼)𝐼𝐼 ̅+ (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻�.

 (5)  

are bounded on a finite time interval. Equation (5) can be written as: 
 

 𝜙𝜙 =

⎣
⎢
⎢
⎢
⎢
⎡𝑆𝑆
̅
𝐸𝐸�
𝐴̅𝐴
𝐼𝐼 ̅
𝐻𝐻�
𝑅𝑅� ⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 𝜔𝜔
(1 − 𝑢𝑢1)Λ 0 0 0 0 0
0 (1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂 0 0 0 0
0 (1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝 0 0 0 0
0 0 (1 − 𝑢𝑢3)𝜑𝜑 (1 − 𝑢𝑢3)𝜙𝜙 0 0
0 0 (𝑢𝑢3 + 𝛾𝛾) (𝑢𝑢3 + 𝛼𝛼) (𝑢𝑢3 + 𝛿𝛿) 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝑆𝑆
̅
𝐸𝐸�
𝐴̅𝐴
𝐼𝐼 ̅
𝐻𝐻�
𝑅𝑅� ⎦
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
Π
0
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎤

. (6)  

 
d) The system is linear in finite time with bounded coefficients, then the super-solutions 𝑆𝑆̅,𝐸𝐸� , 𝐴̅𝐴, 𝐼𝐼 ,̅𝐻𝐻� and 𝑅𝑅� are uniformly 

bounded. Since the solution to each state equation is bounded, we see that,  
 

|𝑓𝑓(𝑡𝑡,𝜙𝜙,𝑢𝑢)| ≤ 𝐾𝐾|𝜙𝜙| + 𝑀𝑀|𝑢𝑢| + 𝑁𝑁. 
where 𝐾𝐾 depends on the coefficients of the system. Thus, the assumption holds.  
 

e) The integrand in the objective functional, which is a cost function 𝑔𝑔(𝜙𝜙,𝑢𝑢) is an affine function. Recall that any affine 
function is a convex and the sum of a convex function is a convex. Therefore, 𝑔𝑔(𝜙𝜙,𝑢𝑢) is convex on 𝑈𝑈. 
 

f) Assume that there exists constants 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 ≥ 0 and 𝜏𝜏∗ ≥ 1 such that 𝑔𝑔(𝜙𝜙,𝑢𝑢) satisfies 𝑔𝑔(𝜙𝜙,𝑢𝑢) ≥ 𝑐𝑐1 + 𝑐𝑐2|𝑢𝑢1|𝜏𝜏 +
𝑐𝑐3|𝑢𝑢2|𝜏𝜏 + 𝑐𝑐4|𝑢𝑢3|𝜏𝜏 + 𝑐𝑐5|𝑢𝑢4|𝜏𝜏. Thus, the state variables are being bounded. 
 
Let 𝑐𝑐1 = inf𝑡𝑡∈[0,𝑇𝑇][𝑀𝑀1𝐸𝐸 + 𝑀𝑀2𝐴𝐴 + 𝑀𝑀3𝐼𝐼 + 𝑀𝑀4𝐻𝐻], 𝑐𝑐2 = 𝑤𝑤1

2
, 𝑐𝑐3 = 𝑤𝑤2

2
, 𝑐𝑐4 = 𝑤𝑤3

2
 and 𝜏𝜏 = 2 then it follows that 𝑔𝑔(𝜙𝜙,𝑢𝑢) ≥

𝑐𝑐1 + 𝑐𝑐2|𝑢𝑢1|𝜏𝜏 + 𝑐𝑐3|𝑢𝑢2|𝜏𝜏 + 𝑐𝑐4|𝑢𝑢3|𝜏𝜏. Thus, this assumption is justified.  
 

Therefore, the optimal control exists.  

5.2. Characterization of an Optimal Control 
In order to determine the necessary conditions for the optimal control the Pontryagin's maximum principle [18, 19] is used. To 
apply this, we need to convert the optimal control problem into a problem of minimizing point wise a Hamiltonian, 𝐻𝐻, with 
respect to 𝑢𝑢. The Hamiltonian associated to our problem is:  
 

𝐻𝐻(𝜙𝜙,𝑢𝑢, 𝜆𝜆) = 𝑀𝑀1𝐸𝐸 + 𝑀𝑀2𝐴𝐴 + 𝑀𝑀3𝐼𝐼 + 𝑀𝑀4𝐻𝐻 + 𝑤𝑤1𝑢𝑢1
2

2
+ 𝑤𝑤2𝑢𝑢2

2

2
+ 𝑤𝑤3𝑢𝑢3

2

2
+ +𝜆𝜆1[Π + 𝜔𝜔𝜔𝜔 − (1 − 𝑢𝑢1)Λ𝑆𝑆 − 𝜇𝜇𝜇𝜇] +

𝜆𝜆2[(1 − 𝑢𝑢1)Λ𝑆𝑆 − (1 − 𝑢𝑢2)𝜂𝜂𝜂𝜂 − 𝜇𝜇𝜇𝜇] + 𝜆𝜆3[(1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂𝜂𝜂 − (1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 − (𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 − 𝜇𝜇𝜇𝜇] + 𝜆𝜆4[(1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝𝑝𝑝 −
(1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛼𝛼)𝐼𝐼 − 𝜇𝜇𝜇𝜇] + 𝜆𝜆5[(1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 + (1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜇𝜇 + 𝜉𝜉)𝐻𝐻] + 𝜆𝜆6[(𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 + (𝑢𝑢3 + 𝛼𝛼)𝐼𝐼 +
(𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜔𝜔 + 𝜇𝜇)𝑅𝑅]  (7) 
 

Based on [20], if the control  𝑢𝑢∗ and the corresponding state 𝜙𝜙∗ are an optimal couple, necessarily there exists a non trivial 
adjoint vector 𝜆𝜆 = (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5, 𝜆𝜆6) satisfying the following equality  
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⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕(𝜙𝜙,𝑢𝑢,𝜆𝜆)
𝜕𝜕𝜕𝜕

,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕(𝜙𝜙,𝑢𝑢,𝜆𝜆)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝜙𝜙,𝑢𝑢,𝜆𝜆)
𝜕𝜕𝜕𝜕

= 0.

, (8)  

 which gives after derivation  

 

⎩
⎪
⎨

⎪
⎧𝑢𝑢𝑖𝑖

∗ = 0,    𝑖𝑖𝑖𝑖    𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

< 0,

0 ≤ 𝑢𝑢𝑖𝑖∗ ≤ 1,    𝑖𝑖𝑖𝑖    𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

= 0,

𝑢𝑢𝑖𝑖∗ = 1,    𝑖𝑖𝑖𝑖    𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝑖𝑖

> 0.

  (9)  

  
Now we apply the necessary conditions to the Hamilton function, H. 
 
Theorem: 2 Given an optimal control 𝑢𝑢∗ and a solution to the corresponding state Equation (2), 𝜙𝜙, then there exist an adjoint 
vector 𝜆𝜆 and this satisfies the following adjoint equation:  
 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= 𝜆𝜆1[(1 − 𝑢𝑢1)Λ + 𝜇𝜇] − 𝜆𝜆2(1 − 𝑢𝑢1)Λ,
𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= −𝑀𝑀1 + 𝜆𝜆2[(1 − 𝑢𝑢2)𝜂𝜂 + 𝜇𝜇] − 𝜆𝜆3(1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂 − 𝜆𝜆4(1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝,
𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= −𝑀𝑀2 + 𝜆𝜆1[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁
− 𝜆𝜆2(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽𝛽𝛽

𝑁𝑁
+ 𝜆𝜆3[(1 − 𝑢𝑢3)𝜑𝜑 + (𝑢𝑢3 + 𝛾𝛾) + 𝜇𝜇] − 𝜆𝜆5(1 − 𝑢𝑢3)𝜑𝜑

−𝜆𝜆6(𝑢𝑢3 + 𝛾𝛾),
𝑑𝑑𝜆𝜆4
𝑑𝑑𝑑𝑑

= −𝑀𝑀3 + 𝜆𝜆1[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽
𝑁𝑁

] − 𝜆𝜆2[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽
𝑁𝑁

] + 𝜆𝜆4[(1 − 𝑢𝑢3)𝜙𝜙 + (𝑢𝑢3 + 𝛼𝛼) + 𝜇𝜇] − 𝜆𝜆5(1 − 𝑢𝑢3)𝜙𝜙
−𝜆𝜆6(𝑢𝑢3 + 𝛼𝛼),
𝑑𝑑𝜆𝜆5
𝑑𝑑𝑑𝑑

= −𝑀𝑀4 + 𝜆𝜆5[(𝑢𝑢3 + 𝛿𝛿) + (𝜇𝜇 + 𝜉𝜉)] − 𝜆𝜆6(𝑢𝑢3 + 𝛿𝛿),
𝑑𝑑𝜆𝜆6
𝑑𝑑𝑑𝑑

= 𝜆𝜆6(𝜔𝜔 + 𝜇𝜇) − 𝜆𝜆1𝜔𝜔 ,                                                                                                                           
𝜆𝜆𝑖𝑖(𝑇𝑇) = 0, 𝑖𝑖 = 1,2,3,4,5,6.

 (10) 

 
𝜆𝜆𝑖𝑖(𝑇𝑇) = 0 is the transversality condition. Moreover, the optimal control 𝑢𝑢∗ is given by  

 

 

⎩
⎪
⎨

⎪
⎧𝑢𝑢1

∗ = min �max �(𝜆𝜆2−𝜆𝜆1)Λ𝑆𝑆
𝑤𝑤1

, 0� , 1� ,

𝑢𝑢2∗ = min �max �(𝜆𝜆3(1−𝑝𝑝)+𝜆𝜆4𝑝𝑝−𝜆𝜆2)𝜂𝜂𝜂𝜂
𝑤𝑤2

, 0� , 1� ,

𝑢𝑢3∗ = min �max �𝜆𝜆3(𝐴𝐴−𝜑𝜑𝜑𝜑)+𝜆𝜆4(𝐼𝐼−𝜙𝜙𝜙𝜙)+𝜆𝜆5(𝜑𝜑𝜑𝜑+𝜙𝜙𝜙𝜙+𝐻𝐻)−𝜆𝜆6(𝐴𝐴+𝐼𝐼+𝐻𝐻)
𝑤𝑤3

, 0� , 1� .
 (11)  

 
Proof: The adjoint equation is obtained by differentiating the Hamiltonian Equation (7) with respect to 𝜙𝜙 = (𝑆𝑆,𝐸𝐸,𝐴𝐴, 𝐼𝐼,𝐻𝐻,𝑅𝑅). 
That is 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝜕𝜕𝜕𝜕(𝜙𝜙,𝑢𝑢,𝜆𝜆)

𝜕𝜕𝜕𝜕
. Assuming that the final states 𝑆𝑆(𝑇𝑇),𝐸𝐸(𝑇𝑇),𝐴𝐴(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝐻𝐻(𝑇𝑇),𝑅𝑅(𝑇𝑇) are free we get the transversality 

conditions 𝜆𝜆(𝑇𝑇) = 0. The optimal controls 𝑢𝑢 are found from the optimality conditions and using the property of the control 
space Ω. The optimality condition of the Hamiltonian gives 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0. That is  

 

 

⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢1

= 0 ⇒ 𝑢𝑢1∗ = (𝜆𝜆2−𝜆𝜆1)Λ𝑆𝑆
𝑤𝑤1

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢2

= 0 ⇒ 𝑢𝑢2∗ = (𝜆𝜆3(1−𝑝𝑝)+𝜆𝜆4𝑝𝑝−𝜆𝜆2)𝜂𝜂𝜂𝜂
𝑤𝑤2

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢3

= 0 ⇒ 𝑢𝑢3∗ = 𝜆𝜆3(𝐴𝐴−𝜑𝜑𝜑𝜑)+𝜆𝜆4(𝐼𝐼−𝜙𝜙𝜙𝜙)+𝜆𝜆5(𝜑𝜑𝜑𝜑+𝜙𝜙𝜙𝜙+𝐻𝐻)−𝜆𝜆6(𝐴𝐴+𝐼𝐼+𝐻𝐻)
𝑤𝑤3

.

 (12)  

 
and using the property of the control space Ω, the controls are given as  
 

 �
𝑢𝑢1∗ = 0,      𝑖𝑖𝑖𝑖    (𝜆𝜆2 − 𝜆𝜆1)Λ𝑆𝑆 < 0,
𝑢𝑢1∗,              𝑖𝑖𝑖𝑖       0 ≤ (𝜆𝜆2 − 𝜆𝜆1)Λ𝑆𝑆 ≤ 𝑤𝑤1,
1,                𝑖𝑖𝑖𝑖          (𝜆𝜆2 − 𝜆𝜆1)Λ𝑆𝑆 > 𝑤𝑤1.

 

 �
𝑢𝑢2∗ = 0,            𝑖𝑖𝑖𝑖    (𝜆𝜆3(1 − 𝑝𝑝) + 𝜆𝜆4𝑝𝑝 − 𝜆𝜆2)𝜂𝜂𝜂𝜂 < 0,
𝑢𝑢2∗ ,                    𝑖𝑖𝑖𝑖    0 ≤ (𝜆𝜆3(1 − 𝑝𝑝) + 𝜆𝜆4𝑝𝑝 − 𝜆𝜆2)𝜂𝜂𝜂𝜂 ≤ 𝑤𝑤2
1,                     𝑖𝑖𝑖𝑖(𝜆𝜆3(1 − 𝑝𝑝) + 𝜆𝜆4𝑝𝑝 − 𝜆𝜆2)𝜂𝜂𝜂𝜂 > 𝑤𝑤2.

,  (13) 
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 �
𝑢𝑢3∗ = 0,          𝑖𝑖𝑖𝑖    (𝜆𝜆3(𝐴𝐴 − 𝜑𝜑𝜑𝜑) + 𝜆𝜆4(𝐼𝐼 − 𝜙𝜙𝜙𝜙) + 𝜆𝜆5(𝜑𝜑𝜑𝜑 + 𝜙𝜙𝜙𝜙 + 𝐻𝐻) − 𝜆𝜆6(𝐴𝐴 + 𝐼𝐼 + 𝐻𝐻)) < 0,
𝑢𝑢3∗ ,                  𝑖𝑖𝑖𝑖    0 ≤ �𝜆𝜆3(𝐴𝐴 − 𝜑𝜑𝜑𝜑) + 𝜆𝜆4(𝐼𝐼 − 𝜙𝜙𝜙𝜙) + 𝜆𝜆5(𝜑𝜑𝜑𝜑 + 𝜙𝜙𝜙𝜙 + 𝐻𝐻) − 𝜆𝜆6(𝐴𝐴 + 𝐼𝐼 + 𝐻𝐻)� ≤ 𝑤𝑤3,
1,                   𝑖𝑖𝑖𝑖�𝜆𝜆3(𝐴𝐴 − 𝜑𝜑𝜑𝜑) + 𝜆𝜆4(𝐼𝐼 − 𝜙𝜙𝜙𝜙) + 𝜆𝜆5(𝜑𝜑𝜑𝜑 + 𝜙𝜙𝜙𝜙 + 𝐻𝐻) − 𝜆𝜆6(𝐴𝐴 + 𝐼𝐼 + 𝐻𝐻)� > 𝑤𝑤3.

 

 

5.3. The Optimality System 
The optimality system consists of the state system in Equation (2) with its initial conditions coupled with the adjoint system 
(Equation (10)) with its transversality conditions together with the characterization of the optimal controls. It is written as 
follows:  
 

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= Π + 𝜔𝜔𝜔𝜔 − (1 − 𝑢𝑢1)Λ𝑆𝑆 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢1)Λ𝑆𝑆 − (1 − 𝑢𝑢2)𝜂𝜂𝜂𝜂 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂𝜂𝜂 − (1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 − (𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝𝑝𝑝 − (1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛼𝛼) − 𝜇𝜇𝜇𝜇,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (1 − 𝑢𝑢3)𝜑𝜑𝜑𝜑 + (1 − 𝑢𝑢3)𝜙𝜙𝜙𝜙 − (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜇𝜇 + 𝜉𝜉)𝐻𝐻,
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (𝑢𝑢3 + 𝛾𝛾)𝐴𝐴 + (𝑢𝑢3 + 𝛼𝛼)𝐼𝐼 + (𝑢𝑢3 + 𝛿𝛿)𝐻𝐻 − (𝜔𝜔 + 𝜇𝜇)𝑅𝑅,
𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= 𝜆𝜆1[(1 − 𝑢𝑢1)Λ + 𝜇𝜇] − 𝜆𝜆2(1 − 𝑢𝑢1)Λ,
𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= −𝑀𝑀1 + 𝜆𝜆2[(1 − 𝑢𝑢2)𝜂𝜂 + 𝜇𝜇] − 𝜆𝜆3(1 − 𝑢𝑢2)(1 − 𝑝𝑝)𝜂𝜂 − 𝜆𝜆4(1 − 𝑢𝑢2)𝑝𝑝𝑝𝑝,
𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= −𝑀𝑀2 + 𝜆𝜆1[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽𝛽𝛽
𝑁𝑁
− 𝜆𝜆2(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽𝛽𝛽

𝑁𝑁
+ 𝜆𝜆3[(1 − 𝑢𝑢3)𝜑𝜑 + (𝑢𝑢3 + 𝛾𝛾) + 𝜇𝜇] − 𝜆𝜆5(1 − 𝑢𝑢3)𝜑𝜑

−𝜆𝜆6(𝑢𝑢3 + 𝛾𝛾),
𝑑𝑑𝜆𝜆4
𝑑𝑑𝑑𝑑

= −𝑀𝑀3 + 𝜆𝜆1[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽
𝑁𝑁

] − 𝜆𝜆2[(1 − 𝑢𝑢1) 𝛽𝛽𝛽𝛽
𝑁𝑁

] + 𝜆𝜆4[(1 − 𝑢𝑢3)𝜙𝜙 + (𝑢𝑢3 + 𝛼𝛼) + 𝜇𝜇] − 𝜆𝜆5(1 − 𝑢𝑢3)𝜙𝜙
−𝜆𝜆6(𝑢𝑢3 + 𝛼𝛼),
𝑑𝑑𝜆𝜆5
𝑑𝑑𝑑𝑑

= −𝑀𝑀4 + 𝜆𝜆5[(𝑢𝑢3 + 𝛿𝛿) + (𝜇𝜇 + 𝜉𝜉)] − 𝜆𝜆6(𝑢𝑢3 + 𝛿𝛿),
𝑑𝑑𝜆𝜆6
𝑑𝑑𝑑𝑑

= 𝜆𝜆6(𝜔𝜔 + 𝜇𝜇) − 𝜆𝜆1𝜔𝜔.                                                                                                                   

 (14) 

 where Λ = 𝛽𝛽(𝐼𝐼+𝑞𝑞𝑞𝑞)
𝑁𝑁

, 𝜆𝜆𝑖𝑖(𝑇𝑇) = 0, 𝑖𝑖 = 1,2,3,4,5,6. 

5.4. Uniqueness of the Optimality System 
In order to successively discuss uniqueness of the optimality system, we notice that the adjoint system is also linear in 𝜆𝜆𝑖𝑖 for 
𝑖𝑖 = 1,2,3,4,5,6 with bounded coefficients. Thus, there exists a 𝑀𝑀 > 0 such that |𝜆𝜆𝑖𝑖(𝑡𝑡)| < 𝑀𝑀 for 𝑖𝑖 = 1,2,3,4,5,6 on [0,𝑇𝑇]. 
 
Theorem 3. For 𝑇𝑇 sufficiently small the solution to the optimality system is unique [21].  

6. NUMERICAL SIMULATION 
In this section, first we discuss the numerical simulation of the autonomous system Equation (1). The values of parameters are 
either taken from literature or assumed on the basis of reality. Using the initial conditions 𝑆𝑆(0) = 600,𝐸𝐸(0) = 350,𝐴𝐴(0) =
300, 𝐼𝐼(0) = 250, 𝐻𝐻(0) = 150, 𝑅𝑅(0) = 200 and also coefficients of the state and controls that we used are 𝑀𝑀1 = 5,𝑀𝑀2 =
5,𝑀𝑀3 = 2,𝑀𝑀4 = 2,𝑤𝑤1 = 0.8,𝑤𝑤2 = 0.7,𝑤𝑤3 = 0.6 a simulation study is conducted. Table 1 further shows the values used in 
this study, and taken from [4]. Finally, an optimal control strategy is designed and discussed using different control 
strategies.To solve the optimal controls and states, we use the Runge-Kutta numerical method using MATLAB program.  
 

Table 1. Parameter values [4] 
Parameter Value Parameter Value 

Π 0.0015 𝜉𝜉 0.001 
𝛽𝛽 0.68 𝜙𝜙 0.004 
𝜇𝜇 0.002 𝜑𝜑 0.003 
𝛾𝛾 0.058 𝑞𝑞 0.004 
𝛼𝛼 0.089 𝜔𝜔 0.09 
𝜂𝜂 0.006 𝛿𝛿 0.078 
𝑝𝑝 0.048   
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6.1. Simulation of the Autonomous 
Numerical simulations of the model Equation (1) show that the disease-free equilibrium is globally stable for some parameter 
values. In particular, Figure 1 shows all solution trajectories starting with different initial points are converges to the disease-
free equilibrium as time goes to infinity for 𝑅𝑅0 < 1. On the other hand, the endemic equilibrium is globally stable for 𝑅𝑅0 > 1 
(Figure 2). Figures 3 and 4 show that Equation (1) starting from different initial points converges to disease free equilibrium 
point. This confirmed that, in the long time limit, it asymptotically approaches to positive equilibrium point.  
 

 

 

 

 
 

 
 

 

 

Figure 1. Disease free solution trajectories 
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Figure 2. Endemic solution trajectories 
 
 

 

 

 

 
 

 
 

 

 

Figure 3. Time series of the trajectories of susceptible, exposed, asymptomatic and symptomatic individuals with different 
initial point 

 

6.2. Simulation of the Optimal Control Problem 
In this subsection we discuss numerical results of Equation (2) to show the effect of various control strategies on the spread of 
HSV-II.  
 
Strategy 1: Implementing Prevention and Treatment 
In this strategy, we applied prevention and treatment as intervention to control HSV-II. Figures 5 and 6 shows that all 
individuals have gone to zero over the period of implementation of this intervention strategy. Therefore, control with 
prevention and treatment reduces the burden to some extent but it is not eliminate HSV-II totally from the community.  
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Figure 4. Time series of the trajectories of HSV-II and recovered individuals with different initial point. 
 

 

 
 

 

 

Figure 5. Exposed and Asymptomatic individuals with prevention and treatment 
 
 

 

 
 

 

 
 

Figure 6. Symptomatic and HSV-II individuals with prevention and treatment 
 
 
Strategy 2: Implementing screening and treatment 
We simulate the optimality system using a combination of screening and treatment as intervention strategy for control of HSV-
II in the community.  Figures 7 and 8 clearly show that infectious individuals have gone to zero at the end of the implementation 
period. 
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Strategy 3: Implementing prevention, screening and treatment 
In this strategy, we implemented all the three controls (prevention, screening and treatment) as intervention to eradicate HSV-
II from the community. Figures  9 and 10 shows that an infectious individual goes to zero at the end of the implementation 
period. Therefore, applying this strategy is effective in eradicating HSV-II from the community in a specified period of time. 
 

 

 
 

 

 
 

Figure 7. Asymptomatic and symptomatic individuals with screening and treatment 
 
 

 
 

Figure 8. HSV-II individuals with screening and treatment 
 

 

 
 

 

 
 

Figure 9. Exposed and asymptomatic individuals with prevention, screening and treatment 
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Figure  10. Symptomatic and HSV-II individuals with prevention,screening and treatment 
 

7. CONCLUSION 
In this paper, an optimal control problem was formulated and analysed to study the effects of implementing continuous controls 
on HSV-II model [11]. In this process, we have designed an optimal control problem that minimizes the cost for 
implementation of the controls while also minimizing the total infectious individuals over the intervention interval.The 
existence of optimal controls and characterization was established using Pontryagin’s Maximum Principle. The findings from 
the optimal control problem revealed that a combination of prevention, screening and treatment are the most effective strategy 
to eradicate the disease from the community. HSV-II infection remain a challenge especially in developing countries, but from 
results of this study we recommend that, the government should introduce education programmers on the importance of 
voluntary and routinely screening on HSV-II infection. For the future work, we plan to extend the study by incorporating 
protected and treatment class to HSV-II transmission dynamics. 
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